
rmake: A Build Process Manager for Complex
Analyses in R

Michal Burda
Institute for Research and Applications of Fuzzy Modeling

Centre of Excellence IT4Innovations, Division University of Ostrava
30. dubna 22, 701 03 Ostrava, Czech Republic

E-mail: Michal.Burda@osu.cz

Abstract

R software allows to develop repeatable statistical analyses, i.e., automatically re-
computable analyses if data or some data processing step changes. However, if the analyses
grow on complexity, their manual re-execution on any change may become tedious and
prone to errors. Make is a widely accepted tool for managing the generation of resulting
files from source data and script files. Make reads dependencies between data and script
files from a text file called the Makefile. The aim of this paper is to present rmake, an R
package for easy generation of Makefiles for statistical and data manipulation projects.

Keywords: statistical analyses, build process, make, Makefile, R.

1. Introduction
R (R Core Team 2017) is a mature scripting language for statistical computations and data
processing. Besides other benefits, an important advantage of R is that it allows to write
repeatable statistical analyses, that is, to program all steps of data processing in a scripting
language, which allows to re-execute the whole process after any change in data or in any
processing step.
There are several useful packages for R to obtain repeatability of statistical computations much
more easier. Among others, let us name knitr (Xie 2015, 2017) and rmarkdown (Allaire, Xie,
McPherson, Luraschi, Ushey, Atkins, Wickham, Cheng, and Chang 2017). These tools allow
to write R scripts that generate reports combining text with tables and figures generated
from data. Creation of final statistical reports by such scripts is as simple as issuing a
single statement from the command line or as clicking an icon in an integrated development
environment (IDE) such as RStudio (RStudio Team 2015).
However, if the analyses grow on complexity, manual re-execution of the whole process may
become tedious, prone to errors, and very demanding from the view of computational power.
Complex analyses involve typically a lot of pre-processing steps on large data sets, a repetitive
execution of commands differing in several parameters only, and producing multiple output
files in various formats. It is very inefficient to re-run over and over again all the pre-processing
steps to refresh the final report after any change on it. A caching mechanism provided by
knitr is very helpful there, but its use is still limited on a single report. It is rational to split

mailto:Michal.Burda@osu.cz

2 rmake: A Build Process Manager for Complex Analyses in R

a complex analysis into several parts and save intermediate results into files. However, such
approach brings another challenge: management of dependencies between inputs, outputs
and underlying scripts to ensure a refresh of all the results on change of any prerequisite. In
open source community, (GNU) Make is a popular tool to help with that.
Make is a tool which controls the generation of intermediate and resulting files from source
data and script files. It was primarily created to help program developers to build executable
binaries from source codes. However, it can be used to generate any type of file. Make
gets its knowledge of how to build the results from a file called the Makefile, which defines
dependencies between files as well as commands of how to create dependent files from their
sources. Make compares last-change timestamps of the files listed in Makefile to determine
which files (and in what order) have to be refreshed in order to get all of them updated.
Make is also quite popular in the R community, with a direct support e.g. by RStudio and
another tools. It is quite straightforward to write Makefile manually and many R users
write simple Makefiles for themselves by hand. However, for more complex build processes,
manual management of Makefile may become grueling. The aim of this paper is to present
rmake, an R package providing tools for easy generation of Makefiles for statistical and data
manipulation tasks in R. The main features of rmake are as follows:

• the use of the well-known Make tool;

• easy definitions of file dependencies in the R language;

• high flexibility provided by parameterized execution of R scripts and programmatically
generated dependencies;

• simple and short code thanks to special %>>% pipeline operator and templating mecha-
nism;

• support for R scripts and R markdown files;

• extensibility for user-defined rule types;

• isolated and parallel execution of building tasks obtained for free thanks to Make’s
parallel processing features;

• support for all platforms including Unix (Linux), MacOS, MS Windows, and Solaris;

• compatibility with RStudio.

A different approach to build complex analytical projects is represented e.g. by the drake
package (Landau 2018), which (unlike to rmake) processes all the tasks within the single R
session and which handles all the dependencies between R objects by itself. To the opposite,
rmake is simply a light-weight generator of the Makefile dependency file, which leaves the
re-generation of obsolete results on the Make utility. A large list of other pipelining projects
may be found also at https://github.com/pditommaso/awesome-pipeline.
The rest of the paper is organized as follows. Section 2 lists all necessary steps for correct
installation and setup. Section 3 describes the basic usage of the rmake package including
initialization of a new project, creating the build rules, running the build process, and visu-
alization of file dependencies. Section 4 provides all details about pre-defined build rules and

Michal Burda 3

custom rules definitions. In Section 5, the advanced topics of rmake usage are discussed: the
mechanism of tasks for grouping the rules that have to be executed together, parameterized
execution of rules, and rule templates. Section 6 concludes the paper.

2. Installation
In order to use rmake, the R environment and the Make program has to be installed and prop-
erly configured, in advance. On Linux-based systems, it is usually a matter of installing the
appropriate distribution packages. On Windows, an installation of Rtools is recommended
that contains the Make tool included.
To install the rmake package from CRAN, execute the following command from within the
R session (note the leading “R>” denotes the R’s shell prompt and it is not a part of the
command):

R> install.packages("rmake")

Alternatively, a development version of rmake may be obtained directly from GitHub:

R> install.packages("devtools")
R> devtools::install_github("beerda/rmake")

2.1. Settings for Use Outside of the R Session

For rmake to work properly, R_HOME and R_ARCH environment variables have to be set cor-
rectly. If executing Make from within an R session (e.g., from RStudio), the environment
variables are set automatically by R. In order to execute Make outside R, for instance, from
the shell, these variables have to be set manually. The R_HOME variable should contain a path
to R’s installation directory and R_ARCH the architecture variant. The correct values may be
obtained from R by issuing the following commands:

R> Sys.getenv("R_HOME")

[1] "/usr/lib/R"

R> Sys.getenv("R_ARCH")

[1] ""

To set environment variables on a Unix-like system, issue the following shell command (“$”
is a shell prompt):

$ export R_HOME=/usr/lib/R
$ export R_ARCH=

4 rmake: A Build Process Manager for Complex Analyses in R

These commands may be added to your home .profile file for variables to be created auto-
matically after you log-in.

3. Basic Usage

3.1. New Project Initialization

To start maintaining the R project with rmake, an R script Makefile.R has to be created
that would then generate the Makefile. That script file may be created manually, or from a
skeleton provided by rmake. To start from skeleton, first load the rmake package:

R> library(rmake)

and then enter the following command:

R> rmakeSkeleton(".")

This will create two files in the current directory (“.”): Makefile.R and Makefile. The first
file is an R script intended to generate the second file. In the beginning, Makefile.R contains
the following:

library(rmake)
job <- list()
makefile(job, "Makefile")

Function makefile() generates Makefile based on a job variable, which currently contains
an empty list. Nevertheless, the generated Makefile contains at least a single rule that
ensures an automatic re-creation of Makefile after any change to the Makefile.R script is
made in the future.

3.2. Running the Build Process

Once the Makefile exists, the Make tool may be executed from within the R session by calling
the following function:

R> make()

make: Nothing to be done for 'all'.

Indeed, nothing is to be done, since the single rule generating the Makefile itself needs not
to be re-generated. After Makefile.R gets updated, Makefile would be re-generated and
also other tasks will be executed, as specified by the rules in Makefile.R.
To run Make from shell, just enter the following command (note the settings needed for
everything to work properly outside the R session in Section 2.1):

Michal Burda 5

$ make

make: Nothing to be done for 'all'.

If working in RStudio, it is beneficial to setup its environment to use Make: in Build/Configure
Build Tools menu, set Project build tools to Makefile. A Build All command becomes available
that runs Make using the generated Makefile.

3.3. Adding a Build Rule

Now, let us do some “real” work. Suppose we have data.csv with the following content:

ID,V1,V2
a,2,8
b,9,1
c,3,3

We would like to compute the sums of columns V1 and V2 and store the result into a file
sums.csv. Therefore, we create the following script file script.R:

d <- read.csv("data.csv")
sums <- data.frame(ID="sum",

V1=sum(d$V1),
V2=sum(d$V2))

write.csv(sums, "sums.csv", row.names=FALSE)

The script reads data.csv into a variable d, creates a data frame sums with computed sums
and writes it to the file sums.csv.
Now, let us modify the Makefile.R script to build the sums.csv file automatically whenever
either data.csv or script.R files change. All that has to be done is to update the line of
code where the job variable is created in Makefile.R:

library(rmake)
job <- list(rRule(target="sums.csv", script="script.R", depends="data.csv"))
makefile(job, "makefile")

Function rRule() creates a new rule for execution of an R script script.R, whose target is
sums.csv and which depends on data.csv. Whenever any dependency file or the script file
changes, the rule triggers and re-executes the given script in order to build the given target.
Let us run the make command again:

R> make()

The Make utility should firstly re-generate the Makefile itself (since Makefile.R has changed)
and then execute script.R in a new R session to create sums.csv. Further calls of make will
do nothing until any change is detected again.
To finalize this toy example, let us create a file named analysis.Rmd with the following
content:

6 rmake: A Build Process Manager for Complex Analyses in R

data.csv script.R sums.csv analysis.Rmd analysis.pdf

Figure 1: A simple chain of dependencies from the example in Section 3.3

title: "Analysis"
output: pdf_document

Sums of data rows

```{r, echo=FALSE, results='asis'}
sums <- read.csv('sums.csv')
knitr::kable(sums)
```

This is a markdown file, which we are going to process with the rmarkdown package to create
a PDF document with the results. This script reads sums.csv and prints its content in a
tabular layout. For more details on how to work with markdown documents see Allaire et al.
(2017).
The analysis.Rmd script depends on the sums.csv data file. The markdown processor
produces an analysis.pdf file from it. Let us now update Makefile.R so that the PDF
file is refreshed everytime either the script or the data change. The job creation command
should be modified as follows:

library(rmake)
job <- list(

rRule(target="sums.csv", script="script.R", depends="data.csv"),
markdownRule(target="analysis.pdf", script="analysis.Rmd",

depends="sums.csv")
)
makefile(job, "makefile")

See Fig. 1 for an illustrative diagram of dependencies. After calling

R> make()

the analysis.pdf is generated.

3.4. The Pipe Operator

The sequence of the above-listed rmake rules makes a chain: data.csv is a prerequisite
for sums.csv which is a prerequisite for analysis.pdf. Such sequence of rules may be
equivalently written using the new “%>>%” pipe operator introduced by rmake (cf. with
Fig. 1):

Michal Burda 7

data1.csv preprocess1.R intermed1.csv

data2.csv preprocess2.R intermed2.csv

merge.R merged.rds

report.Rmd

report.pdf

Figure 2: More complex chain of dependencies from the example in Section 3.4

R> job <- "data.csv" %>>% rRule("script.R") %>>%
+ "sums.csv" %>>% markdownRule("analysis.Rmd") %>>%
+ "analysis.pdf"

Generally, every k-th element of the pipe chain (for k = 2, 4, 6, . . .) must be a call to a function
that creates a rmake rule. Prior its execution, each such function call internally obtains two
additional named arguments: depends and target, whose values are respectively obtained
from the preceding (i.e., (k − 1)-th) or following (i.e., (k + 1)-th) element of the chain.
If some rule depends on or creates multiple files, their names have to be specified as a character
vector (see the c() function) – for instance, the run.R script reads and writes two files:

R> job <- c('in1.csv', 'in2.csv') %>>%
+ rRule('run.R') %>>%
+ c('out1.csv', 'out2.csv')

If the dependencies are more complex than a single chain, multiple chains may be merged
with the c() function as follows:

R> chain1 <- "data1.csv" %>>% rRule("preprocess1.R") %>>% "intermed1.rds"
R> chain2 <- "data2.csv" %>>% rRule("preprocess2.R") %>>% "intermed2.rds"
R> chain3 <- c("intermed1.rds", "intermed2.rds") %>>% rRule("merge.R") %>>%
+ "merged.rds" %>>% markdownRule("report.Rmd") %>>% "report.pdf"
R>
R> job <- c(chain1, chain2, chain3)

A graphical representation of defined dependencies is shown in Fig. 2.

3.5. Cleaning Up
A good manner of Makefile writers is to provide a clean-up task that deletes all files of the
project that were generated within the build process. This is traditionally executed by the
following command:

8 rmake: A Build Process Manager for Complex Analyses in R

$ make clean

Each rmake’s rule type adds automatically to the Makefile a command for deleting all target
files that were generated by that rule. A single exception is the Makefile itself that is never
deleted, although it is generated too.
From within R, the clean-up task may be executed by

R> make("clean")

3.6. Parallel Execution

Some implementations of the Make utility allow to build multiple targets in parallel. For
instance, GNU Make recognizes the -j argument, which can be used to specify the number
of processes to run simultaneously. For instance,

$ make -j8

causes up to 8 targets to be prepared in parallel. If the -j option is given without a number,
the Make utility will not limit the number of rules that can run simultaneously.
From R, the parallel execution might be started with the following command:

R> make("-j8")

3.7. Visualization

The list of rules may be printed, to see concisely the defined dependencies. For instance, the
job from Section 3.4 would produce the following output:

R> print(job)

[[1]]
(preprocess1.R, data1.csv) -> R -> (intermed1.rds)
[[2]]
(preprocess2.R, data2.csv) -> R -> (intermed2.rds)
[[3]]
(merge.R, intermed1.rds, intermed2.rds) -> R -> (merged.rds)
[[4]]
(report.Rmd, merged.rds) -> markdown -> (report.pdf)

A lot more comprehensible view on the graph of dependencies is obtained by visualizing the
job:

R> visualize(job, legend=FALSE)

Michal Burda 9

Figure 3: Visualization of the job from Section 3.4 with the visualize() function

The visualize() function converts the job into a visNetwork’s directed graph and renders it
as an interactive web-page, in which the picture may be zoomed and nodes re-arranged with
a mouse – see Fig. 3 for an overview. The optional legend argument turns off the legend in
the resulting figure.
In the graph, the main script files are depicted with diamonds, rules are represented with
ovals, while the other files are symbolized with squares.

4. Details on Build Rules

The rmake package provides several functions that represent the most common build-rule
types. Each function has a mandatory target argument for a character vector of file names
created by that rule. Additionally, a character vector of file names the rule depends on can
be specified as an optional depends argument. The task argument allows rules to group into
tasks – see Section 5.1 for more details. Some rules also allow an optional params argument to
pass parameters to the scripts; Section 5.2 contains detailed information on that topic. Each
rule, when executed by the Make tool, is started as a separate operating system process,
that is, the R scripts and markdown processors do not share the running instance of the R
interpreter.

4.1. Pre-defined Rule Types

10 rmake: A Build Process Manager for Complex Analyses in R

rRule(target, script, depends = NULL, params = list(), task = "all")

The rRule() rule executes the R script by calling the Rscript executable file from the shell
and source-ing the script file. This rule is fired if either any file from depends or the script
file changes. Cleaning removes all target files.

markdownRule(target, script, depends = NULL, format = "all",
params = list(), task = "all")

The markdownRule() rule renders a target document from the source Markdown script file.
The rendering is done by calling the render() function of the rmarkdown package (Allaire
et al. 2017).
The format argument is passed to the rmarkdown’s render() function as an output_format
parameter and thus may be used to specify the desired format of the resulting file: ’all’
to render all formats defined by the rmarkdown’s output directive specified in the Rmd file,
a name of the format to render a single format or a vector of format names to render mul-
tiple formats. The recognized format names are: ’html_document’ (HTML web page),
’pdf_document’ (Adobe Portable Document Format), ’word_document’ (Microsoft Word
document), ’odt_document’ (OpenDocument Text), ’rtf_document’ (Rich Text Format),
and ’md_document’ (Markdown document).
Cleaning removes all target files.

offlineRule(target, message, depends = NULL, task = "all")

The offlineRule() rule provides a way to force some non-automated action within the Make
build process. It should be used whenever a transformation of prerequisites from the depends
vector into target files requires a manual action. In case of building, a custom error message
is shown that would instruct the user to perform the task by hand until the target files
get more recent modification timestamps than files in depends vector. Cleaning removes all
target files.

4.2. Custom Rules

Besides predefined rule types, any custom rule may be added to the build process. Internally,
the makefile() function generates Makefile from a list of instances of the S3 rmake.rule
class. To create an object of such type, the following general function may be used:

rule(target, depends = NULL, build = NULL, clean = NULL,
task = "all", phony = FALSE)

where target is a character vector of target files that the rules is intended to generate, and
depends is a character vector of prerequisite file names. To the contrast with predefined rule
types, custom rules should add also script file names into a vector of dependencies, preceding
other data files.
The task argument may be used to assign the rule to a certain task, see Section 5.1 for more
information.

Michal Burda 11

The phony argument is a boolean (TRUE/FALSE) value specifying whether the Make rule has
a .PHONY (i.e. non-file) target. A rule should be marked with phony if the target is not a file
name that would be generated by the build command. E.g., all or clean are phony targets.
Also all targets representing tasks (see Section 5.1) are phony. See also the manual to the
Make tool for more details on .PHONY targets.
The build and clean arguments are character vectors with shell commands that have to be
executed during the build or cleaning-up, respectively. It is advisable to write shell commands
with the use of Make variables that are predefined by rmake at the beginning of the Makefile:

• $(R) – a path and file name of the Rscript binary, as obtained from the R_HOME and
R_ARCH environment variable (see Section 2.1 for details);

• $(RM) – a name of the file deletion command (rm on Unix, del on Windows).

For instance, the following rule runs NodeJS JavaScript interpreter on test.js script, which
generates test.json file:

R> r <- rule(target="test.json", depends="test.js", build="node test.js",
+ clean="$(RM) test.json")

Make variables other than $(R) or $(RM) may be defined by modifying the defaultVars global
variable, e.g., let us introduce a new $(JS) variable with path to the JavaScript interpreter:

defaultVars["JS"] <- "/usr/bin/node"

One can then modify the above-listed rule in Makefile.R to use the new $(JS) variable:

library(rmake)
defaultVars["JS"] <- "/usr/bin/node"
job <- list(rule(target="test.json",

depends="test.js",
build="$(JS) test.js",
clean="$(RM) test.json"))

makefile(job, "Makefile")

The rmake package provides a useful tool to help write rules that execute custom R sequence of
commands. The inShell() function simply takes an R language expression and transforms
it into a character vector with a shell command that calls Rscript with parameters that
execute the given expression:

R> inShell({ result <- 1+1; saveRDS(result, "result.rds") })

[1] "$(R) -e '{' \\"
[2] "-e ' result <- 1 + 1' \\"
[3] "-e ' saveRDS(result, \"result.rds\")' \\"
[4] "-e '}'"

12 rmake: A Build Process Manager for Complex Analyses in R

The inShell() function may be used to define a new rule:

rule(target="result.rds",
build=inShell({ result <- 1+1; saveRDS(result, "result.rds") }),
clean="$(RM) result.rds")

However, the overuse of inShell() is not recommended. For normal processing of data, it is
far better to store R commands into a separate script file, because then, after any change to
the code is made, the Make tool can detect it and force update of other depending artifacts.
Any rule change at the level of Makefile will not cause any rebuild of the target. The
intended use of inShell() is to ease the implementation of internals such as in rRule() or
markdownRule().

5. Advanced Usage

5.1. Tasks

The mechanism of tasks allows to make groups of rules. Groups of rules may then be executed
together. If not stating differently, each rmake rule is a member of the all task. rmake also
provides a special clean task for project cleanup. To build all rules grouped into a task,
simply invoke the make command and give it the name of the task. For instance:

$ make all

executes all rules grouped into the all task. Equivalently, we may execute the task from
within the R session:

R> make('all')

A rule is assigned to a task by specifying task name in the task argument of the rule creation
function. A rule may be a member of more than a single task – simply put all task names in
the character vector as the task argument.
In the following example, the rules are divided into two tasks:

library(rmake)
job <- c(

"data.csv" %>>% rRule("preprocess.R") %>>% "data.rds",
"data.rds" %>>% markdownRule("preview.Rmd", task="preview") %>>%

"preview.pdf",
"data.rds" %>>% markdownRule("final.Rmd", task="final") %>>% "final.pdf"

)
makefile(job, "Makefile")

This code creates a rule preprocess.R, which transforms data.csv into data.rds, and two
markdown rules, preview.Rmd and final.Rmd, that are each assigned to its own task named
preview and final, respectively. Thus invoking

Michal Burda 13

R> make("preview")

would create data.rds (because preview.Rmd depends on it, irrespective of preprocess.R
is a member of the all task) and preview.pdf, but not final.pdf. Similarly,

R> make("final")

would generate final.pdf (possibly with previous build of data.rds, if it was not done
already), but not preview.pdf. All rules will be triggered by calling

R> make("all")

5.2. Parameterized Execution of Rules

The rmake package allows to send parameters to the main script of a rule. Both rRule()
and markdownRule() functions may obtain a list of arbitrary data as the params argument.
The content of that argument would be available as the params global variable from within
the script. Through such parameterization, a single R script may be used to produce multiple
outputs. An example is as follows:

library(rmake)
job <- c(

"data.csv" %>>% rRule("fit.R", params=list(alpha=0.1)) %>>% "out-0.1.rds",
"data.csv" %>>% rRule("fit.R", params=list(alpha=0.2)) %>>% "out-0.2.rds",
"data.csv" %>>% rRule("fit.R", params=list(alpha=0.3)) %>>% "out-0.3.rds",
"data.csv" %>>% rRule("fit.R", params=list(alpha=0.4)) %>>% "out-0.4.rds"

)
makefile(job, "Makefile")

We can create the following fit.R script file to see what is inside of the params global variable:

the fit.R file
str(params)

Executing

R> make("all")

will show the following result:

List of 5
$.target : chr "out-0.1.rds"
$.script : chr "fit.R"
$.depends: chr "data.csv"

14 rmake: A Build Process Manager for Complex Analyses in R

$.task : chr "all"
$ alpha : num 0.1

List of 5
$.target : chr "out-0.2.rds"
$.script : chr "fit.R"
$.depends: chr "data.csv"
$.task : chr "all"
$ alpha : num 0.2

List of 5
$.target : chr "out-0.3.rds"
$.script : chr "fit.R"
$.depends: chr "data.csv"
$.task : chr "all"
$ alpha : num 0.3

List of 5
$.target : chr "out-0.4.rds"
$.script : chr "fit.R"
$.depends: chr "data.csv"
$.task : chr "all"
$ alpha : num 0.4

Indeed, the params variable contains the alpha parameter with an expected value. Besides
that, params contains several dot-named values that correspond to the arguments of rRule():
.target, .script, .depends, and .task.
The fit.R script may handle the params global variable directly, but it is advisable to use
the getParam() function instead, which throws an error in case the script is executed without
params being defined before:

the fit.R file
library(rmake)

dataName <- getParam(".depends")
resultName <- getParam(".target")
alpha <- getParam("alpha")

now we can use these variables to do here some real work...

cat("dataName:", dataName, "\n")
cat("resultName:", resultName, "\n")
cat("alpha:", alpha, "\n")

Executing fit.R outside the generated Makefile would trigger a warning message about
non-existence of the parameters:

Michal Burda 15

R> source("fit.R")

dataName: NA
resultName: NA
alpha: NA
Warning message:
In getParam(".depends") :

rmake parameters not found - using default value for ".depends": NA
Warning message:
In getParam(".target") :

rmake parameters not found - using default value for ".target": NA
Warning message:
In getParam("alpha") :

rmake parameters not found - using default value for "alpha": NA

Meaningful default values may be assigned to the parameters by a second argument of the
getParam() function:

dataName <- getParam(".depends", "data.csv")
resultName <- getParam(".target", "result.rds")
alpha <- getParam("alpha", 0.2)

The warning does not disappear, but the script has now a chance to run with proper param-
eters, which may be useful, when debugging the script in RStudio:

R> source("fit.R")

dataName: data.csv
resultName: result.rds
alpha: 0.2
Warning message:
In getParam(".depends", "data.csv") :

rmake parameters not found - using default value for ".depends": data.csv
Warning message:
In getParam(".target", "result.rds") :

rmake parameters not found - using default value for ".target": result.rds
Warning message:
In getParam("alpha", 0.2) :

rmake parameters not found - using default value for "alpha": 0.2

5.3. Rule Templates

More complex analyzes may contain similar rule sequences that repeate multiple times. Think
of fitting multiple models differing only in some parameters, stored into files with a name

16 rmake: A Build Process Manager for Complex Analyses in R

derived from parameter values. The rmake package provides a templating mechanism to avoid
tedious copy&paste of rule definitions and to help quickly creating and easily maintaining the
Makefile.R script.
The idea of rule templates is best presented on the following example. Let us have a lot of
CSV data files that all have to be processed and saved in a uniform way. We may create a
script that processes all files in a loop, but that would make difficult a selective re-calculation
of future changed data. Instead, we might to write a unique rmake rule for each data file:

R> job <- c(
+ "data-1.csv" %>>% rRule("process.R") %>>% "result-1.csv",
+ "data-2.csv" %>>% rRule("process.R") %>>% "result-2.csv",
+ # ...
+ "data-99.csv" %>>% rRule("process.R") %>>% "result-99.csv"
+)

Instead of that, rule templates will simplify the code significantly:

R> tmpl <- "data-$[NUM].csv" %>>% rRule("process.R") %>>% "result-$[NUM].csv"
R> variants <- data.frame(NUM=1:99)
R> job <- expandTemplate(tmpl, variants)

The expandTemplate() function simply takes a list of rules, tmpl, and replaces all appear-
ances of template variables in all strings with their values provided by the variants data
frame. The rules in tmpl are replicated for each row of the variants data frame.
The following example creates rules for each combination of DATA and TYPE:

R> variants <- expand.grid(DATA=c("dataSimple", "dataComplex"),
+ TYPE=c("lm", "rf", "nnet"))
R> print(variants)

DATA TYPE
1 dataSimple lm
2 dataComplex lm
3 dataSimple rf
4 dataComplex rf
5 dataSimple nnet
6 dataComplex nnet

R> tmpl <- "$[DATA].csv" %>>% rRule("fit-$[TYPE].R") %>>%
+ "result-$[DATA]_$[TYPE].csv"
R> job <- expandTemplate(tmpl, variants)

The resulting job contains six rules that combine the specified variants as follows:

Michal Burda 17

R> print(job)

[[1]]
(fit-lm.R, dataSimple.csv) -> R -> (result-dataSimple_lm.csv)
[[2]]
(fit-lm.R, dataComplex.csv) -> R -> (result-dataComplex_lm.csv)
[[3]]
(fit-rf.R, dataSimple.csv) -> R -> (result-dataSimple_rf.csv)
[[4]]
(fit-rf.R, dataComplex.csv) -> R -> (result-dataComplex_rf.csv)
[[5]]
(fit-nnet.R, dataSimple.csv) -> R -> (result-dataSimple_nnet.csv)
[[6]]
(fit-nnet.R, dataComplex.csv) -> R -> (result-dataComplex_nnet.csv)

If duplicated rules are created during the template expansion, they are omitted, as in the
following job:

R> tmpl <- "data.csv" %>>%
+ rRule("pre.R") %>>% "pre.rds" %>>%
+ rRule("comp.R", params=list(alpha="$[NUM]")) %>>% "result-$[NUM].csv"
R> variants <- data.frame(NUM=1:5)
R> job <- expandTemplate(tmpl, variants)

Expansion of the template would yield in repeating the rule

"data.csv" %>>% rRule("pre.R") %>>% "pre.rds"

However, the repeated rules are automatically removed as can be seen from the print:

R> print(job)

[[1]]
(pre.R, data.csv) -> R -> (pre.rds)
[[2]]
(comp.R, pre.rds) -> R -> (result-1.csv)
[[3]]
(comp.R, pre.rds) -> R -> (result-2.csv)
[[4]]
(comp.R, pre.rds) -> R -> (result-3.csv)
[[5]]
(comp.R, pre.rds) -> R -> (result-4.csv)
[[6]]
(comp.R, pre.rds) -> R -> (result-5.csv)

18 rmake: A Build Process Manager for Complex Analyses in R

On the other hand, (not only) a template expansion may often result in distinct rules pro-
ducing a duplicated target. Such sequence of rules is prohibited and causes an error message
in the makefile() function. The problem is illustrated in the example below.

R> tmpl <- "data-$[TYPE].csv" %>>% markdownRule("report.Rmd") %>>%
+ "report.pdf"
R> variants <- data.frame(TYPE=c("a", "b", "c"))
R> job <- expandTemplate(tmpl, variants)
R> print(job)

[[1]]
(report.Rmd, data-a.csv) -> markdown -> (report.pdf)
[[2]]
(report.Rmd, data-b.csv) -> markdown -> (report.pdf)
[[3]]
(report.Rmd, data-c.csv) -> markdown -> (report.pdf)

Here the three different rules produce the same target (report.pdf). An attempt to generate
the Makefile would end with an error:

R> makefile(job)

Error in .validate(job): Duplicate targets found: report.pdf

6. Conclusion
The presented rmake package provides an easy but powerful way for managing complex data
manipulation processes in R using the well-known and broadly adopted Make utility. rmake
brings tools for generation of the Makefile, in which the file dependencies and build rules
are defined. Advanced features of rmake such as pipelining (%>>%), parameterized rules, or
rule templates, enable quick definition of that file dependencies.

Acknowledgements
The support by the project “LQ1602 IT4Innovations excellence in science” is gratefully ac-
knowledged.

References

Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang
W (2017). rmarkdown: Dynamic Documents for R. R package version 1.8, URL https:
//CRAN.R-project.org/package=rmarkdown.

https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown

Michal Burda 19

Landau WM (2018). drake: A Pipeline Toolkit for Reproducible Computation at Scale. R
package version 6.0.0, URL https://CRAN.R-project.org/package=drake.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

RStudio Team (2015). RStudio: Integrated Development Environment for R. RStudio, Inc.,
Boston, MA. URL http://www.rstudio.com/.

Xie Y (2015). Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC,
Boca Raton, Florida. ISBN 978-1498716963, URL https://yihui.name/knitr/.

Xie Y (2017). knitr: A General-Purpose Package for Dynamic Report Generation in R. R
package version 1.18, URL https://yihui.name/knitr/.

Affiliation:
Michal Burda
Institute for Research and Applications of Fuzzy Modeling
Centre of Excellence IT4Innovations, Division University of Ostrava
30. dubna 22, 701 03 Ostrava, Czech Republic
E-mail: Michal.Burda@osu.cz

https://CRAN.R-project.org/package=drake
https://www.R-project.org/
http://www.rstudio.com/
https://yihui.name/knitr/
https://yihui.name/knitr/
mailto:Michal.Burda@osu.cz

	Introduction
	Installation
	Settings for Use Outside of the R Session

	Basic Usage
	New Project Initialization
	Running the Build Process
	Adding a Build Rule
	The Pipe Operator
	Cleaning Up
	Parallel Execution
	Visualization

	Details on Build Rules
	Pre-defined Rule Types
	Custom Rules

	Advanced Usage
	Tasks
	Parameterized Execution of Rules
	Rule Templates

	Conclusion

