
Package: rmake (via r-universe)
September 6, 2024

Type Package

Title Makefile Generator for R Analytical Projects

Version 1.2.0

Author Michal Burda

Maintainer Michal Burda <michal.burda@osu.cz>

Description Creates and maintains a build process for complex analytic
tasks in R. Package allows to easily generate Makefile for the
(GNU) 'make' tool, which drives the build process by (in
parallel) executing build commands in order to update results
accordingly to given dependencies on changed data or updated
source files.

License GPL (>= 3.0)

Encoding UTF-8

LazyData true

Imports tools, pryr, assertthat, rmarkdown, visNetwork, knitr

Suggests testthat

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.0

VignetteBuilder knitr

Repository https://beerda.r-universe.dev

RemoteUrl https://github.com/beerda/rmake

RemoteRef HEAD

RemoteSha 61b615a9dd993501cb54a0f39f4bcaf598b14ff1

Contents
rmake-package . 2
defaultVars . 3
expandTemplate . 4
getParam . 5

1

2 rmake-package

inShell . 6
is.rule . 7
knitrRule . 8
make . 9
makefile . 10
markdownRule . 11
offlineRule . 13
prerequisites . 14
replaceSuffix . 15
replaceVariables . 15
rmakeSkeleton . 16
rRule . 17
rule . 18
subdirRule . 20
visualizeRules . 21
%>>% . 21

Index 23

rmake-package Makefile generator for R analytical projects

Description

rmake creates and maintains a build process for complex analytic tasks in R. Package allows to
easily generate Makefile for the (GNU) ’make’ tool, which drives the build process by (in parallel)
executing build commands in order to update results accordingly to given dependencies on changed
data or updated source files.

Details

Note: The package requires the R_HOME environment variable to be properly set.

Basic Usage

Suppose you have a file dataset.csv. You want to pre-process it and store the results into dataset.rds
within the preprocess.R R script. After that, dataset.rds is then an input file for report.Rmd
and details.Rmd, which are R-Markdown scripts that generate report.pdf and details.pdf.
The whole project can be initialized with rmake as follows:

1. Let us assume that you have rmake package as well as the make tool properly installed.

2. Create a new directory (or an R studio project) and copy your dataset.csv into it.

3. Load rmake package and create skeleton files for it:
library(rmake)
rmakeSkeleton('.')

Makefile.R and Makefile will be created in current directory ('.').

defaultVars 3

4. Create your file preprocess.R, report.Rmd and details.Rmd.

5. Edit Makefile.R as follows:
library(rmake)
job <- list(
rRule('dataset.rds', 'preprocess.R', 'dataset.csv'),
markdownRule('report.pdf', 'report.Rmd', 'dataset.rds'),
markdownRule('details.pdf', 'details.Rmd', 'dataset.rds')
)
makefile(job, "Makefile")

This will create three build rules: processing of preprocess.R and execution of report.Rmd
and details.Rmd in order to generate resulting PDF files.

6. Run make or build your project in R Studio (Build/Build all). This will automatically re-
generate Makefile and execute preprocess.R and the generation of report.Rmd and details.Rmd
accordingly to the changes made to source files.

defaultVars Variables used within Makefile generating process

Description

defaultVars is a reserved variable, a named vector that defines Makefile variables, i.e. shell vari-
ables that will exist during the execution of Makefile rules. The content of this variable is written
into the resulting Makefile within the execution of the makefile() function.

Usage

defaultVars

Format

An object of class character of length 4.

Author(s)

Michal Burda

See Also

makefile()

4 expandTemplate

expandTemplate Expand template rules into a list of rules by replacing rmake variables
with their values

Description

The functionality of expandTemplate() differs accordingly to the type of the first argument. If the
first argument is a template job (i.e., a list of template rules), or a template rule, then a job is created
from templates by replacing rmake variables in templates with values of these variables, as specified
in the second argument. The rmake variable is a part of a string in the format of $[VARIABLE_NAME].

Usage

expandTemplate(template, vars)

Arguments

template An instance of the S3 rmake.rule class, or a list of such objects, or a character
vector.

vars A named character vector, matrix, or data frame with variable definitions. For
character vector, names are variable names, values are variable values. For ma-
trix or data frame, colnames are variable names and column values are variable
values.

Details

If vars is a character vector then all variables in vars are replaced in template so that the result will
contain length(template) rules. If vars is a data frame or a character matrix then the replacement
of variables is performed row-wisely. That is, a new sequence of rules is created from template
for each row of variables in vars so that the result will contain nrow(vars) * length(template)
rules.

If the first argument of expandTemplate() is a character vector then the result is a character vector
created by row-wise replacements of rmake variables, similarly as in the case of template jobs. See
examples.

Value

If template is an instance of the S3 rmake.rule class, or a list of such objects, a list of rules
created from template by replacing rmake variables is returned. If template is a character vector
then a character vector with all variants of rmake values is returned.

Author(s)

Michal Burda

See Also

replaceVariables(), rule()

getParam 5

Examples

Examples with template jobs and rules:

tmpl <- rRule('data-$[VERSION].csv', 'process-$[TYPE].R', 'output-$[VERSION]-$[TYPE].csv')

job <- expandTemplate(tmpl, c(VERSION='small', TYPE='a'))
is equivalent to
job <- list(rRule('data-small.csv', 'process-a.R', 'output-small-a.csv'))

job <- expandTemplate(tmpl, expand.grid(VERSION=c('small', 'big'), TYPE=c('a', 'b', 'c')))
is equivalent to
job <- list(rRule('data-small.csv', 'process-a.R', 'output-small-a.csv'),

rRule('data-big.csv', 'process-a.R', 'output-big-a.csv'),
rRule('data-small.csv', 'process-b.R', 'output-small-b.csv'),
rRule('data-big.csv', 'process-b.R', 'output-big-b.csv'),
rRule('data-small.csv', 'process-c.R', 'output-small-c.csv'),
rRule('data-big.csv', 'process-c.R', 'output-big-c.csv'))

Examples with template character vectors:
expandTemplate('data-$[MAJOR].$[MINOR].csv',

c(MAJOR=3, MINOR=1))
returns: c('data-3.1.csv')

expandTemplate('data-$[MAJOR].$[MINOR].csv',
expand.grid(MAJOR=c(3:4), MINOR=c(0:2)))

returns: c('data-3.0.csv', 'data-4.0.csv',
'data-3.1.csv', 'data-4.1.csv',
'data-3.2.csv', 'data-4.2.csv')

getParam Wrapper around the params global variable

Description

Returns an element of the global params variable that is normally used to send parameters to a
script from the Makefile generated by rmake. Script parameters may be defined with the params
argument of the rRule() or markdownRule() functions.

Usage

getParam(name, default = NA)

Arguments

name Name of the parameter

default Default value to be returned if the params global variable does not exist, which
typically occurs if the script is executed not from Makefile.

6 inShell

Value

Function returns an element of given name from the params variable that is created inside of the
Makefile recipe. If the params global variable does not exist (the script is likely to be executed
directly, i.e., not from the Makefile generated by rmake), the default value is returned and a
warning is generated. If the params global variable exists but it is not a list or the name element
does not exist there, an error is thrown.

Author(s)

Michal Burda

See Also

rRule(), markdownRule()

Examples

task <- getParam('task', 'default')

inShell Convert R code to the character vector of shell commands evaluating
the given R code.

Description

The function takes R commands, deparses them, substitutes existing variables, and converts every-
thing to character strings, from which a shell command is created that sends the given R code to the
R interpreter. Function is used internally to print the commands of R rules into Makefile.

Usage

inShell(...)

Arguments

... R commands to be converted

Value

A character vector of shell commands, which send the given R code by pipe to the R interpreter

Author(s)

Michal Burda

See Also

rRule(), markdownRule()

is.rule 7

Examples

inShell({
x <- 1
y <- 2
print(x+y)

})

is.rule Check if the argument is a valid rule object.

Description

Function tests whether x is a valid rule object, i.e., whether it is list a list and inherits from the
rmake.rule S3 class. Instances of rule represent an atomic building unit, i.e. a command that has
to be executed, which optionally depends on some files or other rules – see rule() for more details.

Usage

is.rule(x)

Arguments

x An argument to be tested

Value

TRUE if x is a valid rule object and FALSE otherwise.

Author(s)

Michal Burda

See Also

rule(), makefile(), rRule(), markdownRule(), offlineRule()

8 knitrRule

knitrRule Rule for building text documents by using the knitr package

Description

This rule is for execution of knitr in order to create the text file, as described in knitr:knit().

Usage

knitrRule(target, script, depends = NULL, params = list(), task = "all")

Arguments

target Name of the output file to be created

script Name of the RNW file to be rendered

depends A vector of file names that the markdown script depends on, or NULL.

params A list of R values that become available within the script in a params variable.

task A character vector of parent task names. The mechanism of tasks allows to
group rules. Anything different from 'all' will cause creation of a new task
depending on the given rule. Executing make taskname will then force building
of this rule.

Details

This rule executes the following command in a separate R process: library(knitr); params <- params; knitr::knit(script, output=target)

That is, parameters given in the params argument are stored into the global variable and then the
script is processed with knitr. That is, the re-generation of the Makefile with any change to
params will not cause the re-execution of the recipe unless any other script dependencies change.

Issuing make clean from the shell causes removal of all files specified in target parameter.

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

markdownRule(), rule(), makefile(), rRule()

make 9

Examples

r <- knitrRule(target='report.tex',
script='report.Rnw',
depends=c('data1.csv', 'data2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

make Run ‘make“ in the system

Description

This function executes the make command in order to re-build all dependencies, accordingly to
Makefile generated by makefile().

Usage

make(...)

Arguments

... Command-line arguments passed to the make command

Value

Exit status of the command, see base::system2() for details.

Author(s)

Michal Burda

See Also

makefile(), rmakeSkeleton()

Examples

Not run:
make() # make all
make('clean') # make the 'clean' task
make('-j', 4) # make with 4 processes in parallell

End(Not run)

10 makefile

makefile Generate Makefile from given list of rules (job).

Description

In the (GNU) make jargon, rule is a sequence of commands to build a result. In this package, rule
should be understood similarly: It is a command or a sequence of command that optionally produces
some files and depends on some other files (such as data files, scripts) or other rules. Moreover, a
rule contain a command for cleanup, i.e. for removal of generated files.

Usage

makefile(
job = list(),
fileName = NULL,
makeScript = "Makefile.R",
vars = NULL,
all = TRUE,
tasks = TRUE,
clean = TRUE,
makefile = TRUE,
depends = NULL

)

Arguments

job A list of rules (i.e. of instances of the S3 class rmake.rule - see rule())

fileName A file to write to. If NULL, the result is returned as a character vector instead of
writing to a file.

makeScript A name of the file that calls this function (in order to generate the makefile
rule)

vars A named character vector of shell variables that will be declared in the resulting
Makefile (additionally to [defaultVars])

all TRUE if the all rule should be automatically created and added: created all rule
has dependencies to all the other rules, which causes that everything is built if
make all is executed in shell’s command line.

tasks TRUE if "task" rules should be automatically created and added – see rule() for
more details.

clean TRUE if the clean rule should be automatically created and added

makefile TRUE if the Makefile rule should be automatically created and added: this rule
causes that any change in the R script - that generates the Makefile (i.e. that
calls makefile()) - issues the re-generation of the Makefile in the beginning of
any build.

depends a character vector of file names that the makefile generating script depends on

markdownRule 11

Details

The makefile() function takes a list of rules (see rule()) and generates a Makefile from them.
Additionally, all and clean rules are optionally generated too, which can be executed from shell
by issuing make all or make clean command, respectively, in order to build everything or erase
all generated files.

If there is a need to group some rules into a group, it can be done either via dependencies or by
using the task mechanism. Each rule may get assigned one or more tasks (see task in rule()).
Each task is then created as a standalone rule depending on assigned rules. That way, executing
make task_name will build all rules with assigned task task_name. By default, all rules are assigned
to task all, which allows make all to build everything.

Value

If fileName is NULL, the function returns a character vector with the contents of the Makefile.
Instead, the content is written to the given fileName.

Author(s)

Michal Burda

See Also

rule(), rmakeSkeleton()

Examples

create some jobs
job <- list(

rRule('dataset.rds', 'preprocess.R', 'dataset.csv'),
markdownRule('report.pdf', 'report.Rmd', 'dataset.rds'),
markdownRule('details.pdf', 'details.Rmd', 'dataset.rds'))

generate Makefile (output as a character vector)
makefile(job)

generate to file
tmp <- tempdir()
makefile(job, file.path(tmp, "Makefile"))

markdownRule Rule for building text documents from Markdown files

Description

This rule is for execution of Markdown rendering in order to create text file of various supported
formats such as (PDF, DOCX, etc.).

12 markdownRule

Usage

markdownRule(target, script, depends = NULL, params = list(), task = "all")

Arguments

target Name of the output file to be created

script Name of the markdown file to be rendered

depends A vector of file names that the markdown script depends on, or NULL.

params A list of R values that become available within the script in a params variable.

task A character vector of parent task names. The mechanism of tasks allows to
group rules. Anything different from 'all' will cause creation of a new task
depending on the given rule. Executing make taskname will then force building
of this rule.

Details

This rule executes the following command in a separate R process: params <- params; rmarkdown::render(script, output_format=format, output_file=target)

That is, parameters given in the params argument are stored into the global variable and then the
script is rendered with rmarkdown. That is, the re-generation of the Makefile with any change to
params will not cause the re-execution of the recipe unless any other script dependencies change.

Issuing make clean from the shell causes removal of all files specified in target parameter.

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

rule(), makefile(), rRule()

Examples

r <- markdownRule(target='report.pdf',
script='report.Rmd',
depends=c('data1.csv', 'data2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

offlineRule 13

offlineRule Rule for requesting manual user action

Description

Instead of building the target, this rule simply issues the given error message. This rule is useful for
cases, where the target target depends on depends, but has to be updated by some manual process.
So if target is older than any of its dependencies, make will throw an error until the user manually
updates the target.

Usage

offlineRule(target, message, depends = NULL, task = "all")

Arguments

target A character vector of target file names of the manual (offline) build command
message An error message to be issued if targets are older than dependencies from depends

depends A character vector of file names the targets depend on
task A character vector of parent task names. The mechanism of tasks allows to

group rules. Anything different from 'all' will cause creation of a new task
depending on the given rule. Executing make taskname will then force building
of this rule.

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

rule(), makefile()

Examples

r <- offlineRule(target='offlinedata.csv',
message='Please re-generate manually offlinedata.csv',
depends=c('source1.csv', 'source2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

14 prerequisites

prerequisites Return given set of properties of all rules in a list

Description

targets() returns a character vector of all unique values of target properties, prerequisites()
returns depends and script properties, and tasks() returns task properties of the given rule()
or list of rules.

Usage

prerequisites(x)

targets(x)

tasks(x)

terminals(x)

Arguments

x An instance of the rmake.rule class or a list of such instances

Details

terminals() returns only such targets that are not prerequisites to any other rule.

Value

A character vector of unique values of the selected property obtained from all rules in x

Author(s)

Michal Burda

See Also

rule()

Examples

job <- 'data.csv' %>>%
rRule('process.R', task='basic') %>>%
'data.rds' %>>%
markdownRule('report.Rnw', task='basic') %>>%
'report.pdf'

prerequisites(job) # returns c('process.R', data.csv', 'report.Rnw', 'data.rds')
targets(job) # returns c('data.rds', 'report.pdf')

replaceSuffix 15

tasks(job) # returns 'basic'

replaceSuffix Replace suffix of the given file name with a new extension (suffix)

Description

This helper function takes a file name fileName, removes an extension (a suffix) from it and adds a
new extension newSuffix.

Usage

replaceSuffix(fileName, newSuffix)

Arguments

fileName A character vector with original filenames

newSuffix A new extension to replace old extensions in file names fileName

Value

A character vector with new file names with old extensions replaced with newSuffix

Author(s)

Michal Burda

Examples

replaceSuffix('filename.Rmd', '.pdf') # 'filename.pdf'
replaceSuffix(c('a.x', 'b.y', 'c.z'), '.csv') # 'a.csv', 'b.csv', 'c.csv'

replaceVariables Replace rmake variables in a character vector

Description

This function searches for all rmake variables in given vector x and replaces them with their values
that are defined in the vars argument. The rmake variable is a identified by the $[VARIABLE_NAME]
string.

Usage

replaceVariables(x, vars)

16 rmakeSkeleton

Arguments

x A character vector where to replace the rmake variables

vars A named character vector with variable definitions (names are variable names,
values are variable values)

Value

A character vector with rmake variables replaced with their values

Author(s)

Michal Burda

See Also

expandTemplate()

Examples

vars <- c(SIZE='small', METHOD='abc')
replaceVariables('result-$[SIZE]-$[METHOD].csv', vars) # returns 'result-small-abc.csv'

rmakeSkeleton Prepare existing project for building with rmake.

Description

This function creates a Makefile.R with an empty rmake project and generates a basic Makefile
from it.

Usage

rmakeSkeleton(path)

Arguments

path Path to the target directory where to create files. Use "." for the current directory.

Author(s)

Michal Burda

See Also

makefile(), rule()

rRule 17

Examples

creates/overrides Makefile.R and Makefile in a temporary directory
rmakeSkeleton(path=tempdir())

rRule Rule for running R scripts

Description

This rule is for execution of R scripts in order to create various file outputs.

Usage

rRule(
target,
script,
depends = NULL,
params = list(),
task = "all",
preBuild = NULL,
postBuild = NULL

)

Arguments

target Name of output files to be created

script Name of the R script to be executed

depends A vector of file names that the R script depends on, or NULL.

params A list of R values that become available within the script in a params variable.

task A character vector of parent task names. The mechanism of tasks allows to
group rules. Anything different from 'all' will cause creation of a new task
depending on the given rule. Executing make taskname will then force building
of this rule.

preBuild a character vector of shell commands to be executed before building the target

postBuild a character vector of shell commands to be executed after building the target

Details

In detail, this rule executes the following command in a separate R process: params <- params; source(script)

That is, parameters given in the params argument are stored into the global variable and then the
script is sourced. That is, the re-generation of the Makefile with any change to params will not
cause the re-execution of the recipe unless any other script dependencies change.

Issuing make clean from the shell causes removal of all files specified in target parameter.

18 rule

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

rule(), makefile(), markdownRule()

Examples

r <- rRule(target='cleandata.csv',
script='clean.R',
depends=c('data1.csv', 'data2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

rule General creator of an instance of the S3 rmake.rule class

Description

Rule is an atomic element of the build process. It defines a set of target file names, which are to
be built with a given build command from a given set depends of files that targets depend on, and
which can be removed by a given clean command.

Usage

rule(
target,
depends = NULL,
build = NULL,
clean = NULL,
task = "all",
phony = FALSE,
type = ""

)

rule 19

Arguments

target A character vector of target file names that are created by the given build com-
mand

depends A character vector of file names the build command depends on

build A shell command that runs the build of the given target

clean A shell command that erases all files produced by the build command

task A character vector of parent task names. The mechanism of tasks allows to
group rules. Anything different from 'all' will cause creation of a new task
depending on the given rule. Executing make taskname will then force building
of this rule.

phony Whether the rule has a PHONY (i.e. non-file) target. A rule should be marked
with phony if the target is not a file name that would be generated by the build
commands. E.g. all or clean are phony targets. Also all targets representing
tasks (see task above) are phony.

type A string representing a type of a rule used e.g. while printing a rule in easily
readable format. For instance, rRule() uses R, markdownRule() uses markdown
etc.

Details

If there is a need to group some rules together, one can assign them the same task identifier in
the task argument. Each rule may get assigned one or more tasks. Tasks may be then built by
executing make task_name on the command line, which forces to rebuild all rules assigned to the
task 'task_name'. By default, all rules are assigned to task all, which causes make all command
to build everything.

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

makefile(), inShell()

Examples

r <- rule(target='something.abc',
depends=c('file.a', 'file.b', 'file.c'),
build='myCompiler file.a file.b file.c -o something.abc',
clean='$(RM) something.abc')

generate the content of a makefile (as character vector)
makefile(list(r))

20 subdirRule

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

subdirRule Rule for running the make process on a subdirectory

Description

The subdirectory in the target argument is assumed to contain its own Makefile. This rule causes
the execution of make <targetTask> in this subdirectory (where <targetTask> is the value of the
targetTask argument).

Usage

subdirRule(target, depends = NULL, task = "all", targetTask = "all")

Arguments

target Name of the subdirectory

depends Must be NULL

task A character vector of parent task names. The mechanism of tasks allows to
group rules. Anything different from 'all' will cause creation of a new task
depending on the given rule. Executing make taskname will then force building
of this rule.

targetTask What task to execute in the subdirectory.

Value

An instance of S2 classs rmake.rule

Author(s)

Michal Burda

See Also

rule(), makefile()

visualizeRules 21

visualizeRules Visualize dependencies defined by a rule or a list of rules

Description

Visualize dependencies defined by a rule or a list of rules

Usage

visualizeRules(x, legend = TRUE)

Arguments

x An instance of the S3 rmake.rule class or a list of such objects

legend Whether to draw a legend

Author(s)

Michal Burda

See Also

makefile(), rule()

Examples

job <- c('data1.csv', 'data2.csv') %>>%
rRule('process.R') %>>%
'data.rds' %>>%
markdownRule('report.Rmd') %>>%
'report.pdf'

Not run:
visualizeRules(job)

End(Not run)

%>>% A pipe operator for rmake rules

Description

This pipe operator simplifies the definition of multiple rmake rules that constitute a chain, that is, if
a first rule depends on the results of a second rule, which depends on the results of a third rule and
so on.

22 %>>%

Usage

lhs %>>% rhs

Arguments

lhs A dependency file name or a call to a function that creates a rmake.rule.

rhs A target file or a call to a function that creates a rmake.rule.

envir The environment in which to evaluate the arguments of the operator.

Details

The format of proper usage is as follows: 'inFile' %>>% rule() %>>% 'outFile', which is equiv-
alent to the call rule(depends='inFile', target='outFile'). rule must be a function that ac-
cepts the named parameters depends and target and creates the rmake.rule object (see rule(),
rRule(), markdownRule() etc.). inFile and outFile are file names.

Multiple rules may be pipe-lined as follows: 'inFile' %>>% rRule('script1.R') %>>% 'medFile'
%>>% rRule('script2.R') %>>% 'outFile', which is equivalent to a job of two rules created
with: rRule(script='script1.R', depends='inFile', target='medFile') and rRule(script='script2.R',
depends='medFile', target='outFile').

Value

A list of instances of the rmake.rule class.

Author(s)

Michal Burda (%>>% operator is derived from the code of the magrittr package by Stefan Milton
Bache and Hadley Wickham)

See Also

rule(), makefile()

Examples

job1 <- 'data.csv' %>>%
rRule('preprocess.R') %>>%
'data.rds' %>>%
markdownRule('report.rnw') %>>%
'report.pdf'

is equivalent to

job2 <- list(rRule(target='data.rds', script='preprocess.R', depends='data.csv'),
markdownRule(target='report.pdf', script='report.rnw', depends='data.rds'))

Index

∗ datasets
defaultVars, 3

%>>%, 21

base::system2(), 9

defaultVars, 3

expandTemplate, 4
expandTemplate(), 16

getParam, 5
getters (prerequisites), 14

inShell, 6
inShell(), 19
is.rule, 7

knitr:knit(), 8
knitrRule, 8

make, 9
makefile, 10
makefile(), 3, 7–13, 16, 18–22
markdownRule, 11
markdownRule(), 5–8, 18, 19, 22

offlineRule, 13
offlineRule(), 7

prerequisites, 14

replaceSuffix, 15
replaceVariables, 15
replaceVariables(), 4
rmake (rmake-package), 2
rmake-package, 2
rmake.rule (rule), 18
rmakeSkeleton, 16
rmakeSkeleton(), 9, 11
rRule, 17

rRule(), 5–8, 12, 19, 22
rule, 18
rule(), 4, 7, 8, 10–14, 16, 18, 20–22

subdirRule, 20

targets (prerequisites), 14
tasks (prerequisites), 14
terminals (prerequisites), 14

visualizeRules, 21

23

	rmake-package
	defaultVars
	expandTemplate
	getParam
	inShell
	is.rule
	knitrRule
	make
	makefile
	markdownRule
	offlineRule
	prerequisites
	replaceSuffix
	replaceVariables
	rmakeSkeleton
	rRule
	rule
	subdirRule
	visualizeRules
	>>
	Index

